我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:刘伯温论坛 > 二元预解式 >

二元光学的光学发展

归档日期:06-06       文本归类:二元预解式      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  随着近代光学和光电子技术的迅速发展,光电子仪器及其元件都发生了深刻而巨大的变化。光学零件已经不仅仅是折射透镜、棱镜和反射镜。诸如微透镜阵列、全息透镜、衍射光学元件和梯度折射率透镜等新型光学元件也越来越多地应用在各种光电子仪器中,使光电子仪器及其零部件更加小型化、阵列化和集成化。微 光学元件是制造小型光电子系统的关键元件,它具有体积小、质量轻、造价低等优点,并且能够实现普通光学元件难以实现的微小、阵列、集成、成像和波面转换等 新功能。

  光学是一门古老的科学。自伽利略发明望远镜以来,光学已走过下几百年的漫长道路。60年代激光的出现,促进了光学技术的迅速发展,但基于折反射原理 的传统光学元(器)件,如透镜、棱镜等人都是以机械的铣、磨、抛光等来制作的,不仅制造工艺复杂,而且元件尺寸大、重量大。在当前仪器走向光、机、电集成 的趋势中,它们已显得臃肿粗大极不匹配。研制小型、高效、阵列化光学元件已是光学界刻不容缓的任务。 80年代中期,美国MIT林肯实验室威尔得坎普(Veldkamp)领导的研究组在设计新型传感系统中,率先提出了“二元光学”的概念,他当时描述道:“ 现在光学有一个分支,它几乎完全不同于传统的制作方式,这就是衍射光学,其光学元件的表面带有浮雕结构;由于使用了本来是制作集成电路的生产方法,所用的 掩模是二元的,且掩模用二元编码形式进行分层,故引出了二元光学的概念。”随后二元光学不仅作为一门技术,而且作为一门学科迅速地受到学术界和工业界的青 睐,在国际上掀起了一股二元光学的研究热潮。

  二元光学于20世纪90年代初在国际上兴起研究热潮,并同时引起学术界与工业界的极大兴趣及青睐。 微光学发展的两个主要分支是:

  (2)基于衍射原理的二元光学。 80年代中期,美国国防部领先科研项目处(DARPA)对MIT林肯实验室资助了名为“二元光学”的项目,其研究目标为:

  (1)发展一种基于微电子制作工艺的光学技术,用以节约资金和劳动力,获取在设计和材料选择上更多的自由度,并开发新的光学功能元件;

  (3)在美国工业界广泛应用衍射光学技术。 随着二元光学技术的发展,二元光学元件已广泛用于光学传感、光通信、光计算、数据存储、激光医学、娱乐消费以及其他特殊的系统中。也许可以说,它的 发展已经经历了三代。第一代,人们采用二元光学技术来改进传统的折射光学元件,以提高它们的常规性能,并实现普通光学元件无法实现的特殊功能。这类元件主 要用于相差校正和消色差。通常是在球面折射透镜的一个面上刻蚀衍射图案,实现折/衍复合消像差和较宽波段上的消色差。如美国柏金-爱尔马 (Perkin-Elmer)公司成功地用于施密特(Schmidt)望远镜上消除球差;美国豪奈威尔(Honey-well)公司在远红外系统中,实现 了复消色差,它们还采用二元光学技术制作出小型光盘读写头。此外,二元光学元件能产生任意波面以实现许多特殊功能,而具有重要的应用价值。如材料加工和表 面热处理中的光束整形元件、医疗仪器中的He-Ne激光聚焦校正器、光学并行处理系统中的光互连元件(等光强分束Dammann光栅)以及辐射聚焦器等。

  二元光学元件的第一代应用技术已趋于成熟,国际上有50多家公司正利用混合型特殊功能元件设计新型光学系统。

  第二代,主要应用于微光学元件和微光学阵列。 80年代末,二元光学进入微光学领域,向微型化、阵列化发展,元件大小从十几个μm至1mm。用二元光学方法制作的高密度微透镜阵列的衍射效率很高,且可 实现衍射受限成像。另外,当刻蚀深度超过几个波长时,微透镜阵列表现出普通的折射元件特性,并具有独特的优点:阵列结构比较灵活,可以是矩阵、圆形或密排 六方形排列;能产生各种轮廓形状的透镜表面,如抛物面、椭圆面及合成表面等;阵列透镜的“死区”可降到零(即填充因子达到100%)。这类高质量的衍射或 折射微透镜阵列,在光通信、光学信息处理、光存储和激光束扫描等许多领域中有重要的应用。比如二元微光学元件在多通道微型传感系统中可作为望远混合光学系 统、光束灵巧控制、多通道处理、探测器阵列和自适应光互连。第三代,即目前正在发展的一代,二元光学瞄准了多层或三维集成微光学,在成像和复杂的光互连中 进行光束变换和控制。多层微光学能够将光的变换、探测和处理集成在一体,构成一种多功能的集成化光电处理器,这一进展将使一种能按不同光强进行适应性调 整、探测出目标的运动并自动确定目标在背景中的位置的图像传感器成为可能。Veldkamp将这种新的二元光学技术与量子阱激光阵列或SEED器件、 CMOS模拟电子技术结合在一起,提出了“无长突神经细胞电子装置(Amacronic)”的设想,它把焦平面结构和局域处理单元耦合在一起,以模仿视网 膜上无长突神经细胞的近距离探测,系统具有边缘增强、动态范围压缩和神经网络等功能。这一代微光学技术的典型应用是多层光电网络处理器。这是一种焦平面预 处理技术,它以二元光学元件提供灵活反馈和非线性预处理能力。探测器硅基片上的微透镜阵列将入射信号光聚焦到阵列探测器的激活区,该基片的集成电路则利用 会聚光激发砷化镓铟二极管发光,其发射光波第二层平面石英基底两面的衍射元件引导到第三层面硅基底的阵列探测器上,经集成电路处理后激发二极管发光……依 次类推,得到处理后的信号。这种多层焦平面预处理器的每一层之间则利用微光学阵列实现互连耦合,它为传感器的微型化、集成化和智能化开辟了新的途径。 发展趋势 二元光学是建立在衍射理论、计算机辅助设计和微细加工技术基础上的光学领域的前沿科学之一,超精细结构衍射元件的设计与加工是发展二元光学的关键技术。二 元光学的发展不仅使光学系统的设计和加工工艺发生深刻的变革,而且其总体发展趋势是未来微光学、微电子学和微机械的集成技术和高性能的集成系统。

本文链接:http://19721112.com/eryuanyujieshi/409.html